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Research Overview
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Research Overview

Software Watermarkin Version 1

b Macee

License mov eax, ebx i Version 2

push eax

Venf'Cauon _add ecx, eax @
| | k.7 E=n

7 Original Code somaerd

(x86 CPU) Version 4
Code Virtualization

Commercial Software

IP Protection

— R
H mov eax, ebx
Proprietary T eax &)
i dd , > ;
Algorithm | EEEEesseax ﬂH Algorithm
- Virtualizer Virtualized
e Software
Code Virtuahization
Commercial Software

University of South Alabama ics, i ) i School of Computing



Research Overview
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Process Virtual Machiines
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Research Overview

- General Purpose

- Protect software algorithms from man at the end attacks
- Code injection techniques
- Reverse engineering

- Force the attacker into a rewrite attack. (Collberg)
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Research Overview

- General Purpose
- Protect software algorithms from man at the end attacks
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Research Objectives

- Explore existing virtualization techniques.

« Examine known subversion methods.

- Introduce an alternative subversion method(s).

- Suggest improvements to existing techniques to better
protect legitimate use of virtualization in software
protection.
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- What is code injection?

- The ultimate goal of a code injection attack is to change the control
flow or flow of execution in a software system in such a way that
anti-cloning resilience mechanism are subverted or intellectual
property protections are nullified.

- General case
 Piracy
- Minor software manipulation.

Application

Attacker Path 1

Attacker Path 2
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Code Injection

- Example:
- When executing a piece of software “IP” (intellectual property) the
following may be expected:
Enter a Valid License Key:
- With some output based on the users input:
The license key is not valid. Please check with your vendor.
- OR:
The license key is valid.
You may execute the protected IP.
Starting to execute protected IP.
Finished executing protected IP.
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- Example:

Dump of assembler code for function checkLicense:

Code Injection

0x08048361 <+0>: push %ebp

0x08048362 <+1>: mov %esp,%ebp
0x08048364 <+3>: sub $0x18,%esp
0x08048367 <+6>: call 0x80482d8 <getLicense>

0x0804836¢ <+11>:
0x08048374 <+19>:
0x08048377 <+22>:
0x0804837c <+27>:
0x0804837e <+29>:

<checkLicense+50>

0x08048380 <+31>:
0x08048387 <+38>:
0x0804838c <+43>:
0x08048391 <+48>:

<checkLicense+62>

0x08048393 <+50>:
0x0804839a <+57>:

movl $0x80a7bfe,0x4(%esp)
mov %eax,(%esp)

call 0x8054b40

test %eax,%eax

jne 0x8048393

movl $0x80a7c0c,(%esp)
call 0x80492e0

call 0x8048250 <IP>

jmp 0x804839f

movl $0x80a7c48,(%esp)
call 0x80492e0

0x0804839f <+62>: leave

0x080483a0 <+63>:

ret

End of assembler dump.

University of South Alabama

\
>

School of Computing



Code Injection

- Example:

Dump of assembler code for function checkLicense:

0x08048361 <+0>: push %ebp
0x08048362 <+1>: mov %esp,%ebp
0x08048364 <+3>: sub $0x18,%esp
0x08048367 <+6>: call 0x80482d8 <getLicense>
0x0804836¢ <+11>: movl $0x80a7bfe,0x4(%esp)
0x08048374 <+19>: mov %eax,(%esp)
0x08048377 <+22>: call 0x8054b40
0x0804837c <+27>: test %oeax,%eax

I=> 0x0804837e <+29>: jne 0x8048393
<checkLicense+50>
0x08048380 <+31>: movl $0x80a7c0c,(%esp)
0x08048387 <+38>: call 0x80492e0

|=> 0x0804838c <+43>: call 0x8048250 <IP>
0x08048391 <+48>: jmp 0x804839f
<checkLicense+62>
0x08048393 <+50>: movl $0x80a7c48,(%esp)
0x0804839a <+57>: call 0x80492e0
0x0804839f <+62>: leave
0x080483a0 <+63>: ret
End of assembler dump.
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Code Injection

- Example:

Using GDB we perform the following
changes which modify the jne byte

Changlng itto a NOP Dump of assembler code for function checkLicense:

- set *(unsigned char*)0x804837e=0x90  0x08048361 <+0>: push %ebp
0x08048362 <+1>: mov %esp,%ebp

- set *(unsigned char*)0x804837f=0x90 0x08048364 <+3>: sub $0x18,%esp
0x08048367 <+6>: call 0x80482d8 <getLicense>

I 0x0804836¢ <+11>: movl $0x80a7bfe,0x4(%esp)
And we observe the following outputs  te < mo e e

after running the program: 0x08048377 <+22>: call 0x8054b40
0x0804837c <+27>: test %eax,%eax
« The license key Is valid. 0x0804837e <+29>: jne 0x8048393
<checkLicense+50>
You may execute the protected IP. 0x08048380 <+31>: movl $0x80a7c0c,(%esp)
_ 0x08048387 <+38>: call 0x80492e0
Starting to execute protected IP. 0x0804838¢ <+43>: call 0x8048250 <IP>
. . 0x08048391 <+48>: jmp 0x804839f
Finished executing protected IP. <checkLicense+62>

0x08048393 <+50>: movl $0x80a7c48,(%esp)
0x0804839a <+57>: call 0x80492e0
0x0804839f <+62>: leave

0x080483a0 <+63>: ret

End of assembler dump

Can virtualization protect against]

this?
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Research Precedent

- RedPill/Blue Pill (Rutkowska)

A
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()

- Cyclical nature of obfuscation and security in general.

- Lack of cohesion and coupling. (Scott 2003)
- Ghosh/Hu/Davidson 2012

University of South Alabama

int swallow_redpill () {
unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";
*((unsigned*)&rpill[3]) = (unsigned)m;
((void(*)()&rpill)();
return (m[5]>0xd0) ? 1 : 0;
3
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Attack Virtual Machines
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Two Prerequisites

1. The attacker must be able to locate the entry function
(EP) of the protective PVM in PV .

2. The attacker must be aware of the guest application’s
Instruction set architecture.
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Unpacking Virtual Machines

- Rolles
1. Reverse engineer the virtual machine.

2. Detect locations at which control flow enters the
virtualization obfuscator.

3. Develop a procedure for producing a
disassembler, given a protected executable.

4. Disassemble the byte code and convert it into
Intermediate code.

5. Apply compiler optimizations to the IR.
Generate x86 code.
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Unpacking Virtual Machines

» Rolles

- Requires a highly skilled attacker
- Large amounts of reverse engineering
- Architecture specific
 Costly and time consuming
- Highly Effective
- Still usually cheaper than rewrite attacks
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Methodology

1. Create a standardized target program for
protection.

2. Choose a representative protection
technique (Forms of PVM).

3. For each representative technique perform
MATE attacks.

4. Provide measurements. (Overhead or proof
of concept)
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Methodology

2. Static PVM

- Static Analysis
- Algorithm only virtualizers have trivially locatable entry points.
- Full code virtualizers are persistent and require additional analysis.
May agree with Rolle’s findings.
- Dynamic analysis
- Dynamic injection could be precise if performed manually.
- Shotgun approaches are effective.
- Brute force methods can be effective.
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Methodology

2. Dynamic PVM

- Static Analysis
- Highly obfuscated
- Static analysis alone is almost completely ineffective
- Dynamic Analysis
- Entry point location is negligible
- Swap functions create patterns
- Hash table’s in STRATA create multiple attack vectors.
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Methodology

3.  Perform Mate Attacks

- Static Virtualizers
- Vulnerable to shotgun and brute force as predicted
- Vulnerable to Rolle’s Method

- Dynamic Virtualizers

- Highly effective against all automated injections.
- Vulnerable to Ghosh method
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Methodology
3. Perform Mate focusing on PVM

» Static Virtualizers

- Fully resistant
- Code is stored in a persistent virtual state
- Reliant on the interpreter
« High Coupling

- Dynamic Virtualizers
- Trivial subversion given the entry point

Application

Attacker Path 1
alize Algorithm

Attacker Path 2

- Multiple known methods for entry points detection
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Methodology

=>|0x090cf203 <+12>: call 0x90d18f4 <hashtable get default>
0x090cf208 <+17>: mov L $0x1,0x8(%eax)
0x090cF20f| <+24>: mov 0xc (%ebp) ,%eax
0x090cf212 <+27>: mov %eax, 0x4(%esp)
0x090cf216 <+31>: mov 0x8(%ebp),%eax

DOSDCHTs <1262 Bov  Dxdlo(vedn) veds 0x090cf219 <+34>: mov %eax f (%esp )

asncizze 3o BrsectiSs strate buld seimlss 0x090cf2lc <+37>: call  0x90cf034 <strata_enter_builder>
0x090cf282 <+139>: nov Oxc (el

Dom0cizes Sl call  Dadlets shashtable_get defoult> 0x090cf221 <+42>: call 0x90d18f4 <hashtable get default>
P13 e o i 0x090cf226 <+47>: cmpl $0x0,0x424 (%eax)

Ox090cfI96 <+159>:  ja Bx90cf29a <strata_build maim+153> . . .
Dol sl MR DENl Siretechulldssinezes 0x090cf22d <+54>: jne 0x90cf236 <strata_build_main+63>

OxiS0cfIYf <elff>:  mov  wax, axct\ésn}
Ox09bcfla3 «172=:  mov  Gc(%ebp) e,
«««Type <return> to continue, or q <returns !n quat--
Ox0obcflab <175 mov  Od(%ean) %eax

Siosoctiad it mlzmﬁﬁnHMw. 0x090cf296 <+159=: ja 0x90cf2%a <strata_build main+163>

0x090cf2h5 <+190>:  movl  S$Ox02d0bAZ, (%esp)

omcrhe digr: QL it top 9x096cT298 <+161=: ijl 0x90cf2cl <strata build main+262>

-%%d., "‘"-» mmmﬁe; S BxPoBcf20a <+163>: 0x90e68eb <targ_thread id-
O:IBIN:f!db ::229::‘ ;1‘; ox90cf2el <strata_build main+241= Exﬂgﬂ C fzg f ":+1E|-a:" H |'|'|l]"|" %‘EEK Il Hx C {%ES p}
R ume: Wy M
ExﬂEEgeé <t§3?>5 i . g gg;?:i -=;{n;a5m;};( n:mgos Exﬂgﬂ C fzaa ":+1?2:" : I'!'Il]"n" Hx C {%E b p } r %EEK .
&$£$:ﬁﬁ:§ﬂ%ﬁﬁﬁﬁiwﬁhﬁivm” -Type =return>= to continue, or qQ <return> to quit---
oseciifs Siter by Sk v 0x090cf2ab <+175=:  mov 0x8 (%eax) , %eax
P a2 i;;‘é”‘ﬁﬁ:: 0x090cf2a9 <+178>: mov %eax, 0x8(%esp)

T e e e, of g s ot 0x098cf2ad <+182>: movl  $0x92dob74,0x4(%esp)
Bosna et v pomieni e 9x090cT2b5 <+19@=: movl  $0x92dob9z, (%esp)
x 1317 <e288>: MmOV " el .
CE ol N BxP90cf2bc «+197=: gall Bx90d1290 <=strata log=
Bt T ot e ap) BxP90cf2c]l =+202>: incl  @x9357e80
oe R SR = P 0x898cf2c7 <+208>: mov  ©x9357e80,%eax
Dol ST mv  Daitese) e 0x090cf2cc =+213=:  cmp 0x93e0bed , %Seax

0x090CTI4D <+328>:  jmp  Ox90cf349 extratn build main+33g=
On90cfI42 <+331>:  movl  $OwO, -GxTO[
0x090cFI49 <+338>:  mov  -Ox7O(%ebp), uax
0x030cfI4e <e3d1>:  mov  eax, Gxc(%esp)
0x090CfIS0 <+345>:  mov  Oxc(Vebp) Neax
0x030cFI53 <e3dB>:  mov  eax, Oud(be:
Ox090CFI5T <+352>:  movl  $Ox92dobeo, um\espl
0x090cFIST <#360>:  movl  $OxG2d0BS1, (hesp)
Ox090cfI66 <4367>:  call  Ox901290 <strata_log>
---Type <return= to continue, or q <return= to quit---
0x090cfI6h <4372>:  call  Ox90eSBeb <targ_thread_id>
Eng90cfITO <+37T>:  mov  eax.Ox18(%esp)
0x050cFIT4 <e381>:  mov  DxG357eB0,%eax
En@90cfITH <+3B6>:  mov  Veax.Oxld(%eso)

University of South Alabama

Bx0opct2d2
AxPofct2dd
BxP9pct2db
Bx090cT2dd
Bx090cT2e0
Bx090cT2e3
Bx090cT2e8
Bx090cT2ed

w2 19
<221
w2 2
w2 3
<4233
w2 3G
<+ 241>
<+ 2dG=:

jl
cmpl
jle
mov

tall

call

0x90cf2e8 <strata_build main+241->
$0x0, 0x93e0bed

0x90cf2e8 <strata_build main+241->
0x8(%ebp) ,%eax

%eax, -0x68 (%ebp)

Bx90cf583 <strata_build main+908=
0x90cffb2 <flush based on timer=
0x96d008f <rekey based on_timer=
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- Dynamic Virtualizers

- Recognizable Entry Pattern

« 73.3% (11/15 trial runs) success rate with shotgun approach after
the pattern was deduced.
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- Dynamic Virtualizers

- Given the success rate of the deduced pattern an automated
algorithm could be implemented directly as a script.

- Small changes to STRATA would render that script ineffective and
a representative or modeled approach may be more relevant.
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4. Overhead Analysis

« Static Virtualizers
« Conclusion that the Rolle’s research is accurate.

- Dynamic Virtualizers
- Linear increase in security
- Sizeftime: 1x — 3X

University of South Alabama ics, i ay, i School of Computing



- Dynamic Virtualizers

BIND Apache
Native i?lgf ﬁfsfd basSeIc)l?SR Native iﬁgf ) gigd basS;(j:l’II‘SR
ISR Expansion ISR Expansion
Disk image 1811 1872 2731 1.51x 916 987 1617 1.77x
text 1786 1838 2690 1.51x 875 939 1566 1.79x
data 23 28 32 1.39x 34 39 43 1.26x
bss 13 32 41 3.15x 166 186 194 1.17x
Table 3: Resident set size overhead (Megabytes).
Zone File BIND Apache
Size (BIND) SDT- SDT-
or Web Page Native SDT- based Expansion Native SDT- based Expansion
Size (Apache) only ISR, only ISR
1K 1.6 5.7 7.0 4.38x N/A N/A N/A N/A
10K 3.5 7.5 8.9 2.54x 0.7 3.0 3.6 5.14x
100K 22.0 26.0 27.4 1.24x 0.7 3.0 3.6 5.14x
10001 N/A N/A N/A N/A 0.7 3.0 3.6 5.14x
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- Dynamic Virtualizers
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- Static virtualizer packages vary from extremely effective to
almost completely ineffective.
- Full code virtualization (high coupling)
- Algorithm virtualization (low coupling)

- Dynamic virtualizers suffer from an additional low coupling
problem.
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- Effective static virtualizers reduce the number of \
automated attack but remain vulnerable to shotgun and
brute force methods.

- Algorithm only virtualizer have negligible benefit given their
overhead costs.

- They also require the Rolles’ method at a minimum for
persistent effective injection.
- High cost manual process
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- Dynamic virtualizers can fully protect the code against
automated injection.
- Can'’t protect themselves
- Low coupling
- Very high overhead costs
- Low cost attacks can bypass.
- Entry point injection
- Ghosh Method

- Interestingly they make the Rolle’s method even more
costly.
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Future Work

- Static/Dynamic Hybrids
- Static virtualizers suffer from automated brute force style injections
- Dynamic virtualizers suffer from low coupling
- Each protects against the others flaw

- Research into the costs and benefits of a hybrid approach could be
performed
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Future Work

- Virtual Dependency
- Design the software to run reliant on the hypervisor
- Decreases overhead/Software engineering issue
- Ghosh subversion approach still viable

« Multi-Process
- Armadillo

- Hardware Integration
- Adds additional coupling
- Arc Injection Protection
- Cryptographically secure block signing
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@ Summary

v'EXplore existing virtualization techniques. \

-Static Virtualization and Software Dynamic
Translation

v Examine known subversion methods.
-Ghosh and Rolles

vIntroduce an alternative subversion method.
-Manual Context Switch Injection

v'Suggest improvements to existing techniques to better
protect legitimate use of virtualization in software
protection.

-Hybrids, Dependencies, or Hardware Integration
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