PROBING THE LIMITS OF VIRTUALIZED
SOFTWARE PROTECTION

Joshua D. Cazalas, J.Todd McDonald, Todd R. Andel
University of South Alabama

Natalia Stakhanova
University of New Brunswick

University of South Alabama

CFITS (Center for Forensics, Information Technology, and Securit

Outline

- Research Overview

- Research Objectives

- Background and Related Research
- Methodology

- Results

- Future Work

- Questions?

University of South Alabama ics, i ay, i School of Computing

Research Overview

License
Verification
Code

4

mov eax, ebx

Software Piracy

push eax
add ecx, eax

|

Original Code
(x86 CPU)

Commercial Software

Proprietary
Algorithm

\
mov eax, ebx
push eax

Stealing
Intellectual Property

Cop
Cop
Cop

lllegal
Cop

add ecx, eax

/

Original Code
(x86 CPU)

Commercial Software

Algorithm
lllegitimate
Software

School of Computing

University of South Alabama

Research Overview

Software Watermarkin Version 1

b Macee

License mov eax, ebx i Version 2

push eax

Venf'Cauon _add ecx, eax @
| | k.7 E=n

7 Original Code somaerd

(x86 CPU) Version 4
Code Virtualization

Commercial Software

IP Protection

— R
H mov eax, ebx
Proprietary T eax &)
i dd , > ;
Algorithm | EEEEesseax ﬂH Algorithm
- Virtualizer Virtualized
e Software
Code Virtuahization
Commercial Software

University of South Alabama ics, i) i School of Computing

Research Overview

Contaxt SDT Virtual Machine

Caplure

lsd o0(r1), £4
AN, &

sub rl, rl, #8
bnez rl, 1%3

Imaginary CPU#1
: Naw

id a Fragment

e

mov eax, ebx .

o] > | & » oo
s

iadd ecx, eax

S @ llaginar?r cPU# 10 Eatch

Decade

Translate

o I
Yes

Host CPU (Exaecusing Translawd Coda from Cache)

Original Code
(x86 CPU)

Code Virtuatization

add 18
add 17

cmp.eq pl

€, x0
i 0
Qo 17

Imaginary CPU#n

j*sssssssssssssssSsssssSsSSSsSsEEoSEEEEEn
-
4

Virtualization(Static) Virtualization(Dynamic)

University of South Alabama CFITS (Center for Forensics, Information Technology, i School of Computing

Process Virtual Machiines

Application
Binary

Randomizing
Translator

Derandomizing
Translator

Operating System Operating System
CPU CPU
Static Translation Dynamic Translation

University of South Alabama ics, i) i School of Computing

Research Overview

- General Purpose

- Protect software algorithms from man at the end attacks
- Code injection techniques
- Reverse engineering

- Force the attacker into a rewrite attack. (Collberg)

encrypted
media Y
(@) = —— = — —— =

Semantics
Core
& esdio " croves
M sudie <
activatian +| e heck I | . P ATE e I Protection o -
code Semantics Attack

Semantics
wialation-respanse Fingerprint I

University of South Alabama CFITS (Center for Forensics, Information Technology, i School of Computing

Research Overview

- General Purpose
- Protect software algorithms from man at the end attacks

k THE ART OF
Disassembler DEBUGGING
& Decompiler g

Static

_ Dynamic
Analysis

Analysis

University of South Alabama ics, i ay, i School of Computing

Research Objectives

- Explore existing virtualization techniques.

« Examine known subversion methods.

- Introduce an alternative subversion method(s).

- Suggest improvements to existing techniques to better
protect legitimate use of virtualization in software
protection.

University of South Alabama ics, i ay, i School of Computing

- What is code injection?

- The ultimate goal of a code injection attack is to change the control
flow or flow of execution in a software system in such a way that
anti-cloning resilience mechanism are subverted or intellectual
property protections are nullified.

- General case
 Piracy
- Minor software manipulation.

Application

Attacker Path 1

Attacker Path 2

University of South Alabama ics, i ay, i School of Computing

Code Injection

- Example:
- When executing a piece of software “IP” (intellectual property) the
following may be expected:
Enter a Valid License Key:
- With some output based on the users input:
The license key is not valid. Please check with your vendor.
- OR:
The license key is valid.
You may execute the protected IP.
Starting to execute protected IP.
Finished executing protected IP.

University of South Alabama ics, i ay, i School of Computing

- Example:

Dump of assembler code for function checkLicense:

Code Injection

0x08048361 <+0>: push %ebp

0x08048362 <+1>: mov %esp,%ebp
0x08048364 <+3>: sub $0x18,%esp
0x08048367 <+6>: call 0x80482d8 <getLicense>

0x0804836¢ <+11>:
0x08048374 <+19>:
0x08048377 <+22>:
0x0804837c <+27>:
0x0804837e <+29>:

<checkLicense+50>

0x08048380 <+31>:
0x08048387 <+38>:
0x0804838c <+43>:
0x08048391 <+48>:

<checkLicense+62>

0x08048393 <+50>:
0x0804839a <+57>:

movl $0x80a7bfe,0x4(%esp)
mov %eax,(%esp)

call 0x8054b40

test %eax,%eax

jne 0x8048393

movl $0x80a7c0c,(%esp)
call 0x80492e0

call 0x8048250 <IP>

jmp 0x804839f

movl $0x80a7c48,(%esp)
call 0x80492e0

0x0804839f <+62>: leave

0x080483a0 <+63>:

ret

End of assembler dump.

University of South Alabama

\
>

School of Computing

Code Injection

- Example:

Dump of assembler code for function checkLicense:

0x08048361 <+0>: push %ebp
0x08048362 <+1>: mov %esp,%ebp
0x08048364 <+3>: sub $0x18,%esp
0x08048367 <+6>: call 0x80482d8 <getLicense>
0x0804836¢ <+11>: movl $0x80a7bfe,0x4(%esp)
0x08048374 <+19>: mov %eax,(%esp)
0x08048377 <+22>: call 0x8054b40
0x0804837c <+27>: test %oeax,%eax

I=> 0x0804837e <+29>: jne 0x8048393
<checkLicense+50>
0x08048380 <+31>: movl $0x80a7c0c,(%esp)
0x08048387 <+38>: call 0x80492e0

|=> 0x0804838c <+43>: call 0x8048250 <IP>
0x08048391 <+48>: jmp 0x804839f
<checkLicense+62>
0x08048393 <+50>: movl $0x80a7c48,(%esp)
0x0804839a <+57>: call 0x80492e0
0x0804839f <+62>: leave
0x080483a0 <+63>: ret
End of assembler dump.

University of South Alabama

\
>

School of Computing

Code Injection

- Example:

Using GDB we perform the following
changes which modify the jne byte

Changlng itto a NOP Dump of assembler code for function checkLicense:

- set *(unsigned char*)0x804837e=0x90 0x08048361 <+0>: push %ebp
0x08048362 <+1>: mov %esp,%ebp

- set *(unsigned char*)0x804837f=0x90 0x08048364 <+3>: sub $0x18,%esp
0x08048367 <+6>: call 0x80482d8 <getLicense>

I 0x0804836¢ <+11>: movl $0x80a7bfe,0x4(%esp)
And we observe the following outputs te < mo e e

after running the program: 0x08048377 <+22>: call 0x8054b40
0x0804837c <+27>: test %eax,%eax
« The license key Is valid. 0x0804837e <+29>: jne 0x8048393
<checkLicense+50>
You may execute the protected IP. 0x08048380 <+31>: movl $0x80a7c0c,(%esp)
_ 0x08048387 <+38>: call 0x80492e0
Starting to execute protected IP. 0x0804838¢ <+43>: call 0x8048250 <IP>
. . 0x08048391 <+48>: jmp 0x804839f
Finished executing protected IP. <checkLicense+62>

0x08048393 <+50>: movl $0x80a7c48,(%esp)
0x0804839a <+57>: call 0x80492e0
0x0804839f <+62>: leave

0x080483a0 <+63>: ret

End of assembler dump

Can virtualization protect against]

this?

University of South Alabama CFITS (Center for Forensics, Information Technology, i School of Computing

Research Precedent

- RedPill/Blue Pill (Rutkowska)

A
cperating sysiem

AME- hardwars

-

operaling system
operaling system
Blue Pill ariver | Blue Fill hypanvisar | ‘ Elua Fill hyparvigor

AMD-V hardware | | AMD-V hardware |

()

- Cyclical nature of obfuscation and security in general.

- Lack of cohesion and coupling. (Scott 2003)
- Ghosh/Hu/Davidson 2012

University of South Alabama

int swallow_redpill () {
unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";
((unsigned)&rpill[3]) = (unsigned)m;
((void(*)()&rpill)();
return (m[5]>0xd0) ? 1 : 0;
3

School of Computing

Attack Virtual Machines

4 DomO GuestVM1 GuestVMZN

T 1 I 1

‘ Apps I Apps
) - |
[os || os |
fyperviso} >

Physical Hardware
S .J_/

Two Prerequisites

1. The attacker must be able to locate the entry function
(EP) of the protective PVM in PV .

2. The attacker must be aware of the guest application’s
Instruction set architecture.

University of South Alabama CFITS (Center for Forensics, Information Technology, and Securi

Unpacking Virtual Machines

- Rolles
1. Reverse engineer the virtual machine.

2. Detect locations at which control flow enters the
virtualization obfuscator.

3. Develop a procedure for producing a
disassembler, given a protected executable.

4. Disassemble the byte code and convert it into
Intermediate code.

5. Apply compiler optimizations to the IR.
Generate x86 code.

University of South Alabama CFITS (Center for Forensics, Information Technology, and Securi

Unpacking Virtual Machines

» Rolles

- Requires a highly skilled attacker
- Large amounts of reverse engineering
- Architecture specific
 Costly and time consuming
- Highly Effective
- Still usually cheaper than rewrite attacks

University of South Alabama ics, i ay, i School of Computing

Methodology

1. Create a standardized target program for
protection.

2. Choose a representative protection
technique (Forms of PVM).

3. For each representative technique perform
MATE attacks.

4. Provide measurements. (Overhead or proof
of concept)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Securi

5%

Methodology

2. Static PVM

- Static Analysis
- Algorithm only virtualizers have trivially locatable entry points.
- Full code virtualizers are persistent and require additional analysis.
May agree with Rolle’s findings.
- Dynamic analysis
- Dynamic injection could be precise if performed manually.
- Shotgun approaches are effective.
- Brute force methods can be effective.

University of South Alabama ics, i ay, i School of Computing

Methodology

2. Dynamic PVM

- Static Analysis
- Highly obfuscated
- Static analysis alone is almost completely ineffective
- Dynamic Analysis
- Entry point location is negligible
- Swap functions create patterns
- Hash table’s in STRATA create multiple attack vectors.

University of South Alabama ics, i ay, i School of Computing

Methodology

3. Perform Mate Attacks

- Static Virtualizers
- Vulnerable to shotgun and brute force as predicted
- Vulnerable to Rolle’s Method

- Dynamic Virtualizers

- Highly effective against all automated injections.
- Vulnerable to Ghosh method

University of South Alabama ics, i ay, i School of Computing

Methodology
3. Perform Mate focusing on PVM

» Static Virtualizers

- Fully resistant
- Code is stored in a persistent virtual state
- Reliant on the interpreter
« High Coupling

- Dynamic Virtualizers
- Trivial subversion given the entry point

Application

Attacker Path 1
alize Algorithm

Attacker Path 2

- Multiple known methods for entry points detection

University of South Alabama

School of Computing

Methodology

=>|0x090cf203 <+12>: call 0x90d18f4 <hashtable get default>
0x090cf208 <+17>: mov L $0x1,0x8(%eax)
0x090cF20f| <+24>: mov 0xc (%ebp) ,%eax
0x090cf212 <+27>: mov %eax, 0x4(%esp)
0x090cf216 <+31>: mov 0x8(%ebp),%eax

DOSDCHTs <1262 Bov Dxdlo(vedn) veds 0x090cf219 <+34>: mov %eax f (%esp)

asncizze 3o BrsectiSs strate buld seimlss 0x090cf2lc <+37>: call 0x90cf034 <strata_enter_builder>
0x090cf282 <+139>: nov Oxc (el

Dom0cizes Sl call Dadlets shashtable_get defoult> 0x090cf221 <+42>: call 0x90d18f4 <hashtable get default>
P13 e o i 0x090cf226 <+47>: cmpl $0x0,0x424 (%eax)

Ox090cfI96 <+159>: ja Bx90cf29a <strata_build maim+153> . . .
Dol sl MR DENl Siretechulldssinezes 0x090cf22d <+54>: jne 0x90cf236 <strata_build_main+63>

OxiS0cfIYf <elff>: mov wax, axct\ésn}
Ox09bcfla3 «172=: mov Gc(%ebp) e,
«««Type <return> to continue, or q <returns !n quat--
Ox0obcflab <175 mov Od(%ean) %eax

Siosoctiad it mlzmﬁﬁnHMw. 0x090cf296 <+159=: ja 0x90cf2%a <strata_build main+163>

0x090cf2h5 <+190>: movl S$Ox02d0bAZ, (%esp)

omcrhe digr: QL it top 9x096cT298 <+161=: ijl 0x90cf2cl <strata build main+262>

-%%d., "‘"-» mmmﬁe; S BxPoBcf20a <+163>: 0x90e68eb <targ_thread id-
O:IBIN:f!db ::229::‘ ;1‘; ox90cf2el <strata_build main+241= Exﬂgﬂ C fzg f ":+1E|-a:" H |'|'|l]"|" %‘EEK Il Hx C {%ES p}
R ume: Wy M
ExﬂEEgeé <t§3?>5 i . g gg;?:i -=;{n;a5m;};(n:mgos Exﬂgﬂ C fzaa ":+1?2:" : I'!'Il]"n" Hx C {%E b p } r %EEK .
&$£$:ﬁﬁ:§ﬂ%ﬁﬁﬁﬁiwﬁhﬁivm” -Type =return>= to continue, or qQ <return> to quit---
oseciifs Siter by Sk v 0x090cf2ab <+175=: mov 0x8 (%eax) , %eax
P a2 i;;‘é”‘ﬁﬁ:: 0x090cf2a9 <+178>: mov %eax, 0x8(%esp)

T e e e, of g s ot 0x098cf2ad <+182>: movl $0x92dob74,0x4(%esp)
Bosna et v pomieni e 9x090cT2b5 <+19@=: movl $0x92dob9z, (%esp)
x 1317 <e288>: MmOV " el .
CE ol N BxP90cf2bc «+197=: gall Bx90d1290 <=strata log=
Bt T ot e ap) BxP90cf2c]l =+202>: incl @x9357e80
oe R SR = P 0x898cf2c7 <+208>: mov ©x9357e80,%eax
Dol ST mv Daitese) e 0x090cf2cc =+213=: cmp 0x93e0bed , %Seax

0x090CTI4D <+328>: jmp Ox90cf349 extratn build main+33g=
On90cfI42 <+331>: movl $OwO, -GxTO[
0x090cFI49 <+338>: mov -Ox7O(%ebp), uax
0x030cfI4e <e3d1>: mov eax, Gxc(%esp)
0x090CfIS0 <+345>: mov Oxc(Vebp) Neax
0x030cFI53 <e3dB>: mov eax, Oud(be:
Ox090CFI5T <+352>: movl $Ox92dobeo, um\espl
0x090cFIST <#360>: movl $OxG2d0BS1, (hesp)
Ox090cfI66 <4367>: call Ox901290 <strata_log>
---Type <return= to continue, or q <return= to quit---
0x090cfI6h <4372>: call Ox90eSBeb <targ_thread_id>
Eng90cfITO <+37T>: mov eax.Ox18(%esp)
0x050cFIT4 <e381>: mov DxG357eB0,%eax
En@90cfITH <+3B6>: mov Veax.Oxld(%eso)

University of South Alabama

Bx0opct2d2
AxPofct2dd
BxP9pct2db
Bx090cT2dd
Bx090cT2e0
Bx090cT2e3
Bx090cT2e8
Bx090cT2ed

w2 19
<221
w2 2
w2 3
<4233
w2 3G
<+ 241>
<+ 2dG=:

jl
cmpl
jle
mov

tall

call

0x90cf2e8 <strata_build main+241->
$0x0, 0x93e0bed

0x90cf2e8 <strata_build main+241->
0x8(%ebp) ,%eax

%eax, -0x68 (%ebp)

Bx90cf583 <strata_build main+908=
0x90cffb2 <flush based on timer=
0x96d008f <rekey based on_timer=

CFITS (Center for Forensics, Information Technology,

School of Computing

- Dynamic Virtualizers

- Recognizable Entry Pattern

« 73.3% (11/15 trial runs) success rate with shotgun approach after
the pattern was deduced.

University of South Alabama ics, i ay, i School of Computing

- Dynamic Virtualizers

- Given the success rate of the deduced pattern an automated
algorithm could be implemented directly as a script.

- Small changes to STRATA would render that script ineffective and
a representative or modeled approach may be more relevant.

University of South Alabama ics, i ay, i School of Computing

4. Overhead Analysis

« Static Virtualizers
« Conclusion that the Rolle’s research is accurate.

- Dynamic Virtualizers
- Linear increase in security
- Sizeftime: 1x — 3X

University of South Alabama ics, i ay, i School of Computing

- Dynamic Virtualizers

BIND Apache
Native i?lgf ﬁfsfd basSeIc)l?SR Native iﬁgf) gigd basS;(j:l’II‘SR
ISR Expansion ISR Expansion
Disk image 1811 1872 2731 1.51x 916 987 1617 1.77x
text 1786 1838 2690 1.51x 875 939 1566 1.79x
data 23 28 32 1.39x 34 39 43 1.26x
bss 13 32 41 3.15x 166 186 194 1.17x
Table 3: Resident set size overhead (Megabytes).
Zone File BIND Apache
Size (BIND) SDT- SDT-
or Web Page Native SDT- based Expansion Native SDT- based Expansion
Size (Apache) only ISR, only ISR
1K 1.6 5.7 7.0 4.38x N/A N/A N/A N/A
10K 3.5 7.5 8.9 2.54x 0.7 3.0 3.6 5.14x
100K 22.0 26.0 27.4 1.24x 0.7 3.0 3.6 5.14x
10001 N/A N/A N/A N/A 0.7 3.0 3.6 5.14x

University of South Alabama

CFITS (Center for Forensics, Information Technology,

School of Computing

- Dynamic Virtualizers

3

25

2
=]
]
]

£ 15
@
>
o

Benchmark

l Architecture 1
l Architecture 2

University of South Alabama

CFITS (Center for Forensics, Information Technology,

School of Computing

- Static virtualizer packages vary from extremely effective to
almost completely ineffective.
- Full code virtualization (high coupling)
- Algorithm virtualization (low coupling)

- Dynamic virtualizers suffer from an additional low coupling
problem.

University of South Alabama ics, i ay, i School of Computing

- Effective static virtualizers reduce the number of \
automated attack but remain vulnerable to shotgun and
brute force methods.

- Algorithm only virtualizer have negligible benefit given their
overhead costs.

- They also require the Rolles’ method at a minimum for
persistent effective injection.
- High cost manual process

University of South Alabama ics, i ay, i School of Computing

- Dynamic virtualizers can fully protect the code against
automated injection.
- Can'’t protect themselves
- Low coupling
- Very high overhead costs
- Low cost attacks can bypass.
- Entry point injection
- Ghosh Method

- Interestingly they make the Rolle’s method even more
costly.

University of South Alabama ics, i ay, i School of Computing

Future Work

- Static/Dynamic Hybrids
- Static virtualizers suffer from automated brute force style injections
- Dynamic virtualizers suffer from low coupling
- Each protects against the others flaw

- Research into the costs and benefits of a hybrid approach could be
performed

University of South Alabama ics, i ay, i School of Computing

Future Work

- Virtual Dependency
- Design the software to run reliant on the hypervisor
- Decreases overhead/Software engineering issue
- Ghosh subversion approach still viable

« Multi-Process
- Armadillo

- Hardware Integration
- Adds additional coupling
- Arc Injection Protection
- Cryptographically secure block signing

University of South Alabama ics, i ay, i School of Computing

@ Summary

v'EXplore existing virtualization techniques. \

-Static Virtualization and Software Dynamic
Translation

v Examine known subversion methods.
-Ghosh and Rolles

vIntroduce an alternative subversion method.
-Manual Context Switch Injection

v'Suggest improvements to existing techniques to better
protect legitimate use of virtualization in software
protection.

-Hybrids, Dependencies, or Hardware Integration

University of South Alabama ics, i ay, i School of Computing

Questions?

WHY DO WHALES JUMP £ 14/ BOTERTces Mot) JLIv 0
LR LICAES CRenn o B R WY ARE, THERE SLAVES)IN THE BIBLE,
WHY DO T GAY Ry ™ F i e Ao Fpor ool b s B i MG
WHY I SEA BALT BETTER T 2WHY IS HITPS IMPORTANT
WM PR FERE REES N EC HOBLE OF 6 .8 SE™ — £%
UANY ISTHERE LADGHING IN TV SHOB, | R mﬁ%m g&
ChY AT, pe s ol v ey 2 e 2
%ﬁmﬁ&ﬁ&%nwgg : fa
W&H‘% e S i e WHY ARENT ECONOMISTS Rl%l%l FerE izt RG

52

g‘“ P;EWTHEEESDFPNYCRJIJEINR&GIEETER MN
WHY ES¢ WHY DO AMERICANS CALL IT SOWCER 5 g
WY DO ONAKES EXIST = |JHY ARE MY EARS RINGINGZ WHY 19 PSYCHIC \JEAK TO BUG

x

R e Brhka & \JHY ARE THERE. 50 MANY AVENGERSA WHY DO CHILDREN GET CANCER &~ ¢
WY 00 THEY CALL. IT THE. CLAP X WHY ARE. THE AVENGERS RIGHTING THE. X MEN & WHY 19 POSEIDON ANGRY WITH ODYSSELS T T
LY ARE KAE AD RV P2 UHY 15 UOLVERINE NOT N THE AVENGERS 5 WHY' 1S THERE. ICE IN SPACE <<
s e S WHY ARE THERE ANTS IN MY LAPTOPZ X
Y (R TR IUOTROHES ON RS 2L WHY 15 EARTH TLEDE [v age seme. | WHY 1S THERE. AN OWJL IN MY BACKYARD

Uyt e Fere Co it e (vt oy WHY IS SPACE BUICK | ™ Griogrs | LHY 15 THERE AN OUL OUTSIDE wwmﬁ
LN 16 OHIO AR 80 LIERD T iz fwes o1 ve ooy) WHY 15 THERE AN OWL ONTHE DOLLAR BILL

£

LA HEE BOSINSE \WHY ARE. THERE TINY SPIDERS IN MY HOUSE WHY ARE. AK.Y75 SO EXPENSIVE &2
SR TSERRT < \WJHY DO SPIDERS COME msmﬁ'* WHY ARE THERE HELICOPTERS QIRCLING MY m.raﬁé
WHY BRE THERE. | 8 WHY ARE THERE. HUGE SPIDERS IN MY HOUSE WHYARE THERE. GODS wmwmmz

| WHY ARE. THERE LOTS OF SPDERS IN MY HOUSE \WHY ARE THERE. TWO SFOCES w&%ﬂ

UHY ARE THERE SPDERS N MY RIOM 1 LTV 16 MT VESUVIUS. THERE. S Whiv 1 6505 HITE

kY D0 SPDER WHY DO THEY SAY T MINUS Siissensres
E Y 16 DYING 50 SCARY SWHY ARE. THERE OBELISKS 5t Z

ﬂ

Er \WHY ARENT —
Qs e s %w&@mﬁ N PR AL S ﬁ%%
=
<

ARE THERE. MALE AND FEMALE. BIKES % WHY DO OWLS ATTACK PEOPLE ™)

g
—

:
j
5
;

S
;
o
x

=
WHY
Ly s OGRS SO LY L ARENT THERE E GRADES — .
ﬁa‘%ﬁﬁgw 19 1SOLATON BADT| | WHY 1S ARWEN DY-'NG§
LhY DOTREES Dt g ohlY 0,05 LKE TE @ WHY ARENT MY QUAIL LAYING EGGB 2 s s sy
WY AFDNT FORERIOH RIRL o S7 STERE LIPS AT JPUAE WHYARENT MY QUAIL BG5S HATCHING G ikiy 15 STEALING WRONG
e TVWJHY 1S (YING GOoD WHY AREN'T THERE. ANY FOREIGN MILITARY BASES IN AMERICA

University of South Alabama ics, i) i School of Computing

	Probing the Limits of Virtualized Software Protection
	Outline
	Research Overview
	Research Overview
	Research Overview
	Process Virtual Machiines
	Research Overview
	Research Overview
	Research Objectives
	Background and Related Research�Code Injection
	Code Injection
	Code Injection
	Code Injection
	Code Injection
	Research Precedent
	Attack Virtual Machines
	Unpacking Virtual Machines
	Unpacking Virtual Machines
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Methodology
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Results
	Future Work
	Future Work
	Summary
	Questions?

