
Mixed-Mode Malware and Its Analysis

Shabnam Aboughadareh1, Christoph Csallner1, Mehdi Azarmi2
1University of Texas at Arlington

2Purdue University

PPREW-4

New Orleans, Louisiana

Mixed-Mode Malware

• Performs both user and kernel level actions

– One familiar example: Kernel/device driver exploits

• User-mode malware exploits a kernel vulnerability to execute

a shellcode with kernel privilege

• User and kernel actions are inter-dependant

– Example: malware adjusts its user-mode actions based
on kernel data modifications done by kernel-mode

actions

1

Mixed-Mode Malware

Sample 1: Stuxnet Kernel Exploit

• User-mode malware

• Runs a kernel-mode shellcode to perform “privilege

escalation” attack:

– Access the list of process objects (EPROCESS) in kernel

– Overwrite the token value (a member field) of malware’s

process object with “System” process object’s token value

– Such kernel data modification makes user-mode

instructions execute with administrator privilege

• Kernel exploits can freely manipulate any OS data and

code besides the common usage for privilege escalation

(e.g., escalation attack + process hiding)

2

Mixed-Mode Malware

Sample 1: Stuxnet Kernel Exploit

3

User

Kernel

Win32k.sys

driver

shellcode

Mixed-Mode Malware

Sample 1: Stuxnet Kernel Exploit

4

User

Kernel

Win32k.sys

driver

shellcode

Mixed-Mode Malware

Sample 1: Stuxnet Kernel Exploit

5

User

Kernel

Win32k.sys

driver

shellcode

Kernel Data

Mixed-Mode Malware

Sample 1: Stuxnet Kernel Exploit

6

User

Kernel

shellcode

Kernel Data

Q. Can current kernel-mode

malware analysis techniques

detect the execution of

shellcode with kernel privilege

and log its operations? (e.g.,

recording which kernel data has

been manipulated)

dAnubis Kernel Analysis Tool

Against Sample 1

• Part of Anubis malware analysis tool

• Effective for analysis of standalone kernel-mode

malware samples (e.g., malicious drivers or kernel-

mode rootkits)

• Not effective for analysis of kernel exploits such as

sample 1

7

dAnubis Kernel Analysis Tool

Against Sample 1

8

User

Kernel

dAnubis can analyze

dAnubis Kernel Analysis Tool

Against Sample 1

9

User

Kernel

shellcode

Kernel Data

dAnubis can analyze dAnubis cannot analyze

Mixed-Mode Malware Analysis

Design Key 1

• Effective mixed-mode analysis technique must

detect and analyze the execution of untrusted

kernel code (e.g., the shellcode in sample 1)

10

Mixed-Mode Malware

Sample 2: Inter-dependant user and

kernel components

• A bit background about common non mixed-mode

malware samples:

– Many malware samples have user and kernel mode

components (e.g., flame, duqu)

– The kernel mode component is usually a rootkit that

hides malware trace (e.g., hiding malware process in
user mode) and does not participate in actual attack

11

Mixed-Mode Malware

Sample 2: Inter-dependant user and

kernel components

12

• System call swapping attack: Malware uses a

kernel-mode component to change the semantic of

system calls it invokes

– Malware invokes a benign sequence of system calls in
user-mode but a malicious sequence of system services

 executes in kernel

– Tracking system calls of applications is an important

technique for malware detection and analysis

– Such mixed-mode malware can evade intrusion
detection systems or malware analysis techniques

Mixed-Mode Malware

Sample 2: Inter-dependant user and

kernel components

13

User

Kernel

Mal.exe

Mixed-Mode Malware

Sample 2: Inter-dependant user and

kernel components

14

User

Kernel

Mal.exe

2. Call A

Mixed-Mode Malware

Sample 2: Inter-dependant user and

kernel components

15

User

Kernel

Mal.exe

2. Call A

Service A

Mixed-Mode Malware

Sample 2: Inter-dependant user and

kernel components

16

User

Kernel

Mal.exe

2. Call A

Service A

Service B
4. Invoke system service B

Ether Malware Analysis Tool

Against Sample 2

• Proof-of-concept malware analysis tool built on

basis of hardware virtualization technology (Xen)

• Single-mode analysis approach:

– Trust on integrity of kernel during the analysis

– Inaccurate system call tracking log for analysis of
sample 2

17

Ether Malware Analysis Tool

Against Sample 2

18

User

Kernel

Mal.exe

2. Call A Ether logs A

Ether Malware Analysis Tool

Against Sample 2

19

User

Kernel

Mal.exe

2. Call A

Service A

Service B

Ether logs A

What Actually Executes!!!

Mixed-Mode Malware Analysis

Design Key 2

• Effective mixed-mode analysis technique must

operate in both user and kernel mode and track the

execution of kernel during the analysis

20

Mixed-Mode Malware Analysis

• Design Key 1: Detect and Log the execution of

untrusted kernel code

• Design Key 2: Operate in both user and kernel

mode

Q. Can we customize a current malware analysis tool

for mixed-mode analysis?

21

TEMU Malware Analysis Tool

Against Mixed-Mode Malware

• Part of Bitblaze project

• Uses software virtualization technology (QEMU)

• Uses a kernel-mode driver for Virtual Machine
Introspection (VMI)

*VMI: Obtain the OS state (e.g., current process) from

hardware state (memory bytes and register values) of virtual
machine

• A mixed-mode malware can compromise the execution
of the analysis components residing in its execution
domain (e.g., manipulating the OS functions used for
VMI such as GetCurrentProcess)

22

TEMU Malware Analysis Tool

Against Mixed-Mode Malware

23

VM
User

Kernel

HOST

TEMU

VMI Driver

TEMU

Analysis Component

Attack

Send

OS state

Mixed-Mode Malware Analysis

Design Key 3

• Malware Analysis components should reside

outside the domain of mixed-mode malware

24

Mixed-Mode Malware Analysis

Approach 1

• Design Key 1: Detect and Log the execution of

untrusted kernel code

• Approach 1:

– Before malware execution: Get OS state (address

range of trusted kernel code and kernel data)

– After malware execution: Detect the execution of

untrusted kernel code using the obtained trusted code

address range

25

Mixed-Mode Malware Analysis

Approach 2

• Design Key 2: Operate in both user and kernel

mode

• Approach 2:

– Get whole-system execution trace of malware (even

for user-mode samples) :

• Control flow of kernel after system call occurs

• Access (read/write) of kernel data

26

Mixed-Mode Malware Analysis

Approach 3

• Design Key 3: Put analysis components outside the

mixed-mode malware’s domain

• Approach 3:

– Perform VMI by reverse engineering of OS from

outside of the VM

• For Windows OS, use of PDB (program database) files as

debug symbols:

– Obtain name and address of many OS data and codes

27

SEMU Malware Analysis Tool

28

Some components

Inside malware domain

Fully outside

malware domain

User

Kernel

Kernel+User

Ether

SEMU TEMU

Anubis(TTAnalyze)

d-Anubis

Y = What

X =

Where

SEMU Malware Analysis Tool

29

QEMU

VM

User

Kernel

HOST

Code

Data

SEMU VMI

Component

Data: Name,

addr, value

Code: Name,

addr

Shadow Mem.

Reverse

Engineering

Before malware execution

SEMU Malware Analysis Tool

30

QEMU

VM

User

Kernel

HOST

Code

Data

SEMU VMI

Component
SEMU Analysis

Component

Data: Name,

addr, value

Code: Name,

addr

Shadow Mem.
Reverse

Eng.

After malware execution

Trace

 log
Trace

Analyzer

Analysis

Report

Tracing

Evaluation

• Research Question 1: Can SEMU analyze mixed-

mode malware that cannot be fully analyzed by

current state-of-the-art approaches?

31

Mixed-Mode Malware Analysis Result

32

Description Affected Object Via OS
function

Kernel
LOC

User
LOC

Slow-down

Modify
System calls

KTHREAD No 370 1,684 35.3

Modify
system calls

(MDL)

SSDT

Yes

417

1,684

38.7

DKOM
object

hiding

EPROCESS
DRIVER_OBJECT

No

96

451

28.2

DKSM
renaming

EPROCESS No 111 451 20.6

Privilege
escalation

EPROCESS No 0 149 25.2

User-mode
unhook

SSDT Yes 0 710 29.1

Evaluation

• Research Question 2: Is the SEMU execution time

competitive with current state-of-the-art

approaches?

33

Fine-grained VMI: Instruction tracing in

Ether and SEMU (S)

34

Inside-the-guest VMI in TEMU (T) and

Outside-the-guest VMI in SEMU (S)

35

Backup

36

…

Kernel

 User

Mal.exe KTHREAD

Pointer to
syscall table

Syscall
lookup

3. Call
A(P)

Mal.exe

Fake syscalls Real syscalls

index B

5. OS transfers control to rootkit

Rootkit

Service B

Service A index A

Pointer to B

Pointer to A

...

Pointer to rootkit

Pointer to rootkit

...

index B

index A
… ...

…

37

Win32K.sys data

Valid addr

Valid addr 0

1

2

5

Valid addr Win32K.sys
Code

2. Load shell code
at address C

…

_aNLSVKFProc
array

User

Kernel

5. Execute code at
address C with
kernel privileges

Index

C

Shell
Code

5

layout

...

Dropper.exe

Dropper.exe

1

2

Mal.exe
3

Function Modifier

Zw1

...

Pointer to Zw1

Syscall table

Mm1
No VMI notification

VMI
Driver

...

Zw1

...

Pointer to Zw1

...

Zw1’

...

Pointer to Zw1’

...

Syscall table

Syscall table

Mm1

Mm1
VMI notification

VMI

False VMI

2.1: Hook

Function Modifier

3.1: Create
new process

User

Kernel

Zw1’’: Call ZW1,
hide Mal.exe

Service A

3.2: Call
ZW1

Dropper.exe

VMI
Driver

VMI
Driver

