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Mixed-Mode Malware 

• Performs both user and kernel level actions  

– One familiar example: Kernel/device driver exploits 

• User-mode malware exploits a kernel vulnerability to execute 

a shellcode with kernel privilege 

 

• User and kernel actions are inter-dependant   

– Example: malware adjusts its user-mode actions based 
on kernel data modifications done by kernel-mode 

actions 
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Mixed-Mode Malware 

Sample 1: Stuxnet Kernel Exploit 

• User-mode malware 

• Runs a kernel-mode shellcode to perform “privilege 

escalation” attack: 

– Access the list of process objects (EPROCESS) in kernel 

– Overwrite the token value (a member field) of malware’s 

process object with “System” process object’s token value 

– Such kernel data modification makes user-mode 

instructions execute with administrator privilege 

• Kernel exploits can freely manipulate any OS data and 

code besides the common usage for privilege escalation 

(e.g., escalation attack + process hiding) 
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Mixed-Mode Malware 

Sample 1: Stuxnet Kernel Exploit 
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Mixed-Mode Malware 
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Mixed-Mode Malware 

Sample 1: Stuxnet Kernel Exploit 
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Q. Can current kernel-mode 

malware analysis techniques 

detect the execution of 

shellcode with kernel privilege 

and log its operations? (e.g., 

recording which kernel data has 

been manipulated) 



dAnubis Kernel Analysis Tool  

Against Sample 1 

• Part of Anubis malware analysis tool 

 

• Effective for analysis of standalone kernel-mode 

malware samples (e.g., malicious drivers or kernel-

mode rootkits) 

 

• Not effective for analysis of kernel exploits such as 

sample 1 
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dAnubis Kernel Analysis Tool  

Against Sample 1 
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dAnubis Kernel Analysis Tool  

Against Sample 1 
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Mixed-Mode Malware Analysis 

Design Key 1 

• Effective mixed-mode analysis technique must 

detect and analyze the execution of untrusted 

kernel code (e.g., the shellcode in sample 1) 
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Mixed-Mode Malware 

Sample 2: Inter-dependant user and  

kernel components 

• A bit background about common non mixed-mode 

malware samples: 

– Many malware samples have user and kernel mode 

components (e.g., flame, duqu) 

 

– The kernel mode component is usually a rootkit that 

hides malware trace (e.g., hiding malware process in 
user mode) and does not participate in actual attack 
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Mixed-Mode Malware 

Sample 2: Inter-dependant user and  

kernel components 

12 

• System call swapping attack: Malware uses a 

kernel-mode component to change the semantic of 

system calls it invokes 

– Malware invokes a benign sequence of system calls in 
user-mode but a malicious sequence of system services 

    executes in kernel 

– Tracking system calls of applications is an important 

technique for malware detection and analysis  

– Such mixed-mode malware can evade intrusion 
detection systems or malware analysis techniques 

  

 

 



Mixed-Mode Malware 

Sample 2: Inter-dependant user and  

kernel components 
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Mixed-Mode Malware 
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Mixed-Mode Malware 

Sample 2: Inter-dependant user and  

kernel components 
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Ether Malware Analysis Tool 

Against Sample 2 

• Proof-of-concept malware analysis tool built on 

basis of hardware virtualization technology (Xen) 

• Single-mode analysis approach: 

– Trust on integrity of kernel during the analysis 

– Inaccurate system call tracking log for analysis of 
sample 2 
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Ether Malware Analysis Tool 

Against Sample 2 
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Ether Malware Analysis Tool 

Against Sample 2 
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Mixed-Mode Malware Analysis 

Design Key 2 

• Effective mixed-mode analysis technique must 

operate in both user and kernel mode and track the 

execution of kernel during the analysis 
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Mixed-Mode Malware Analysis 

• Design Key 1: Detect and Log the execution of 

untrusted kernel code 

 

• Design Key 2: Operate in both user and kernel 

mode 

 

Q. Can we customize a current malware analysis tool 

for mixed-mode analysis? 
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TEMU Malware Analysis Tool  

Against Mixed-Mode Malware 

• Part of Bitblaze project 

• Uses software virtualization technology (QEMU) 

• Uses a kernel-mode driver for Virtual Machine 
Introspection (VMI) 

*VMI: Obtain the OS state (e.g., current process) from 

hardware state (memory bytes and register values) of virtual 
machine 

 

• A mixed-mode malware can compromise the execution 
of the analysis components residing in its execution 
domain (e.g., manipulating the OS functions used for 
VMI such as GetCurrentProcess) 
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TEMU Malware Analysis Tool  

Against Mixed-Mode Malware 
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Mixed-Mode Malware Analysis 

Design Key 3 

• Malware Analysis components should reside 

outside the domain of mixed-mode malware 
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Mixed-Mode Malware Analysis 

Approach 1 

• Design Key 1: Detect and Log the execution of 

untrusted kernel code 

• Approach 1:  

– Before malware execution: Get OS state (address 

range of trusted kernel code and kernel data)  

– After malware execution: Detect  the execution of 

untrusted kernel code using the obtained trusted code 

address range 
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Mixed-Mode Malware Analysis 

Approach 2 

• Design Key 2: Operate in both user and kernel 

mode 

• Approach 2: 

– Get whole-system execution trace of malware (even 

for user-mode samples) : 

• Control flow of kernel after system call occurs 

• Access (read/write) of kernel data 
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Mixed-Mode Malware Analysis 

Approach 3 

• Design Key 3: Put analysis components outside the 

mixed-mode malware’s domain 

• Approach 3: 

– Perform VMI by reverse engineering of OS from 

outside of the VM 

• For Windows OS, use of PDB (program database) files as 

debug symbols: 

– Obtain name and address of many OS data and codes 
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SEMU Malware Analysis Tool 
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SEMU Malware Analysis Tool 
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SEMU Malware Analysis Tool 
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Evaluation 

• Research Question 1: Can SEMU analyze mixed-

mode malware that cannot be fully analyzed by 

current state-of-the-art approaches? 
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Mixed-Mode Malware Analysis Result 
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Description Affected Object Via OS 
function 

Kernel 
LOC 

User 
LOC 

Slow-down 

Modify 
System calls 

KTHREAD No 370 1,684 35.3 

Modify 
system calls 

(MDL) 

 
SSDT 

 
Yes 

 
417 

 
1,684 

 
38.7 

DKOM 
object 

hiding 

EPROCESS 
DRIVER_OBJECT 

 
No 

 
96 

 
451 

 
28.2 

DKSM 
renaming 

EPROCESS No 111 451 20.6 

Privilege 
escalation 

EPROCESS No 0 149 25.2 

User-mode 
unhook 

SSDT Yes 0 710 29.1 



Evaluation 

• Research Question 2: Is the SEMU execution time 

competitive with current state-of-the-art 

approaches? 
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Fine-grained VMI: Instruction tracing in 

Ether and SEMU (S) 
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Inside-the-guest VMI in TEMU (T) and 

Outside-the-guest VMI in SEMU (S) 
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Backup 
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Dropper.exe 
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