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Motivation

Malware combine a variety of defenses to avoid detection and hinder
analysis.

Anti-Analysis

Anti-Debug
IsDebuggerPresent
Self-Debugging
...

Anti-VM
VMWare - IN
VirtualPC - Invalid Instruction
...

Anti-Dissassembly
Garbage Bytes
Fake Conditional Jumps
...

Obfuscation
Push Pop Math
NOP Sequence

...

Anti-Tracing
Timing-Based

...

Anti-Tampering
Self-Checksumming

Nonnative-Checksumming
...
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Framework

We propose a general information-flow-based framework to detect
anti-analysis defenses.
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Self-Checksumming

Observation Validation Response
Information

Flow

Information

Flow

Normal

Execution

Abnormal

Execution

Computing a checksum · Simple comparison

· Checksum-based code 

unpacking
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Timing-Based Anti-Emulation

Observation Validation Response
Information

Flow

Information

Flow

Normal

Execution

Abnormal

Execution

t0 = clock()

…

t1 = clock()

...

if (t1-t0 > threshold) if (t1-t0 > threshold) {

      // response

}

// normal execution
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Anti-Debugging using ProcessDebugPort

Observation Validation Response
Information

Flow

Information

Flow

Normal

Execution

Abnormal

Execution

NtQueryInformationProcess(-1, 

ProcessDebugPort, &retVal, ...);

if (retVal != 0) if (retVal !=0 ) {

      // Debugger Detected

} else {

   // Normal execution

}
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Anti-VM - Detect VMWare

Observation Validation Response
Information

Flow

Information

Flow

Normal

Execution

Abnormal

Execution

mov eax, `VMXh`

mov ecx,  0ah

mov dx,   `VX`

in     eax,  dx

cmp ebx, `VMXh` je detected
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Design Space

Stages of the framework can be used in different combinations to create
and understand new defenses.

· Code checksum

· Time clock

· NtQueryInformation 

Process

· Exception generation

· ...

· Comparison instruction

· Flags register 

manipulation

· Indirect jump

· Other tricky math...

· Affect control flow

· Use as unpacking key

· Correctness of output

· ...

Observation Validation Response
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Detection: Self-Checksumming (1/6)

C

Checksum

Validation
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Detection: Self-Checksumming (2/6)

C

Checksum

Validation

Forward Taint

Forward Taint
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Detection: Self-Checksumming (3/6)

C
Checksum

Validation

C’

Unpacking
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Detection: Self-Checksumming (4/6)

C

Checksum

Validation
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Forward Taint
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Detection: Self-Checksumming (5/6)

Checksum

Validation
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Unpacking

C

Unpacking

13 / 29



Detection: Self-Checksumming (6/6)

Checksum

Validation

C’

Unpacking

C

Unpacking

Backward Taint

Backward Taint

Forward Taint

Forward Taint

Forward Taint
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Detection: Timing-Based Anti-Emulation

...

t0 = clock()

...

t1 = clock()

...

Trace

verifier(t0, t1)

Forward Taint
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Detection: Anti-Debugging using ProcessDebugPort

...

mov eax, offset RetVal

push eax

push 7 ; ProcessDebugPort

...

call NtQueryInformationProcess

...

Trace

cmp RetVal, 0

jne DebuggerDetected

Forward Taint
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Detection: Anti-VM - VMware

...

mov eax, `VMXh`

mov ecx, 0ah

mov dx, `VX`

in eax, dx

...

Trace

cmp ebx, `VMXh`

je detected

Forward Taint
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Evaluation
Setup - Samples

50-guards: 50 different interleaving self-checksumming guards

decrypt-key: a checksum as a code decryption key

chksum-md5: a checksum to generate an MD5 initialization constant

time-md5: time-based defense

timing-themida & timing-obsidium packed with Themida and
Obsidium
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Result

Table 1: Evaluation Result

Program No. of Guards Analysis Time Instructions
Found Ground Truth (sec) in Trace

50-guards 50 50 95 2,702,679
decrypt-key 1 1 8 124,472
chksum-md5 1 1 4 296,138
time-md5 4 4 5 226,855

timing-obsidium 0 Unknown 347 27,461,928
timing-themida 2 Unknown 223 9,304,222
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Limitation

Low code coverage

The code coverage could be improved by multiple path exploration
or generating inputs by symbolic execution

Large scale trace files

Recording relevant instructions
or parallel processing
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Challenges - Implicit Flow

Example

x =0; z =0;
i f ( y=0) then x =1; e l s e z =1; e n d i f
i f ( x=0) then w=0; e n d i f
i f ( z=0) then w=1; e n d i f
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Challenges - False Positives

Self-Checksumming: Data compression

Code Code Data Data

Copy Copy Copy Copy

Memory
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Challenges - False Positives

Timing-based anti-emulation: Benchmark programs

Example

t = c l o c k ( )
. . .
t = c l o c k ( ) − t
i f ( t < 10) s c o r e = 1 0 0 ;
e l s e i f ( t < 20) s c o r e = 9 0 ;
. . .
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Conclusion

We describe an information-flow-based framework for understanding a
wide variety of anti-analysis defenses

Self-checksumming, timing-based anti-emulation, anti-debugging and
anti-VM defenses are instances of this framework.

Experimental results shows that this framework is effective.
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Related Work

In 2005, Wurster et al. employs hardware assisted techniques to
bypass the self-checksumming defense.

In 2005, Giffin et al. show that self-modifying code can be used to
detect the attack Wurster et al. proposed.

In 2008, Brumley et al. use a combination of dynamic binary
instrumentation and mixed symbolic and concrete execution, to
identify behavior that is dependent on environmental triggers.

In 2006, Crandall et al. use a combination of VM-based timer
perturbation and symbolic execution to discover time bombs in
malware.

In 2010, Lindorfer et al. and Balzarotti et al. discuss detecting
environment-dependent behavior in native malware by comparing
multiple executions in different environments.
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End

Questions?
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Code: decrypt-key

checksum = compute checksum (CODE) ;
f o r ( i = 0 ; i < s i z e ; i ++)

CODE[ i ] −= checksum ;
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Code: chksum-md5

i n t cksum = compute checksum (CODE) ;
. . .
// This v a l u e shou ld be 0 x67452301 ;
mdContext−>buf [ 0 ] = chksum + 0x6740E9CB ;
. . .
p r i n t f ( ”%s ” , md5 st r ) ;
. . .
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Code: timing-md5

DWORD t1 = GetTickCount ( ) ;
MD5( ) ;

i f ( GetTickCount ( ) − t1 > 50)
{

p r i n t f ( ” I am t r a c e d .\ n” ) ;
}
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