
A Framework for Understanding Dynamic Anti-Analysis
Defenses

Jing Qiu Babak Yadegari Brian Johannesmeyer
Saumya Debray Xiaohong Su

Harbin Institute of Technology, Harbin, China
The University of Arizona, Tucson, US

Dec. 9, 2014

1 / 29

Motivation

Malware combine a variety of defenses to avoid detection and hinder
analysis.

Anti-Analysis

Anti-Debug
IsDebuggerPresent
Self-Debugging
...

Anti-VM
VMWare - IN
VirtualPC - Invalid Instruction
...

Anti-Dissassembly
Garbage Bytes
Fake Conditional Jumps
...

Obfuscation
Push Pop Math
NOP Sequence

...

Anti-Tracing
Timing-Based

...

Anti-Tampering
Self-Checksumming

Nonnative-Checksumming
...

2 / 29

Framework

We propose a general information-flow-based framework to detect
anti-analysis defenses.

Observation Validation Response
Information

Flow

Information

Flow

Normal

Execution

Abnormal

Execution

3 / 29

Self-Checksumming

Observation Validation Response
Information

Flow

Information

Flow

Normal

Execution

Abnormal

Execution

Computing a checksum · Simple comparison

· Checksum-based code

unpacking

4 / 29

Timing-Based Anti-Emulation

Observation Validation Response
Information

Flow

Information

Flow

Normal

Execution

Abnormal

Execution

t0 = clock()

…

t1 = clock()

...

if (t1-t0 > threshold) if (t1-t0 > threshold) {

 // response

}

// normal execution

5 / 29

Anti-Debugging using ProcessDebugPort

Observation Validation Response
Information

Flow

Information

Flow

Normal

Execution

Abnormal

Execution

NtQueryInformationProcess(-1,

ProcessDebugPort, &retVal, ...);

if (retVal != 0) if (retVal !=0) {

 // Debugger Detected

} else {

 // Normal execution

}

6 / 29

Anti-VM - Detect VMWare

Observation Validation Response
Information

Flow

Information

Flow

Normal

Execution

Abnormal

Execution

mov eax, `VMXh`

mov ecx, 0ah

mov dx, `VX`

in eax, dx

cmp ebx, `VMXh` je detected

7 / 29

Design Space

Stages of the framework can be used in different combinations to create
and understand new defenses.

· Code checksum

· Time clock

· NtQueryInformation

Process

· Exception generation

· ...

· Comparison instruction

· Flags register

manipulation

· Indirect jump

· Other tricky math...

· Affect control flow

· Use as unpacking key

· Correctness of output

· ...

Observation Validation Response

8 / 29

Detection: Self-Checksumming (1/6)

C

Checksum

Validation

9 / 29

Detection: Self-Checksumming (2/6)

C

Checksum

Validation

Forward Taint

Forward Taint

10 / 29

Detection: Self-Checksumming (3/6)

C
Checksum

Validation

C’

Unpacking

11 / 29

Detection: Self-Checksumming (4/6)

C

Checksum

Validation

C’

Unpacking

Backward Taint

Forward Taint

Forward Taint

12 / 29

Detection: Self-Checksumming (5/6)

Checksum

Validation

C’

Unpacking

C

Unpacking

13 / 29

Detection: Self-Checksumming (6/6)

Checksum

Validation

C’

Unpacking

C

Unpacking

Backward Taint

Backward Taint

Forward Taint

Forward Taint

Forward Taint

14 / 29

Detection: Timing-Based Anti-Emulation

...

t0 = clock()

...

t1 = clock()

...

Trace

verifier(t0, t1)

Forward Taint

15 / 29

Detection: Anti-Debugging using ProcessDebugPort

...

mov eax, offset RetVal

push eax

push 7 ; ProcessDebugPort

...

call NtQueryInformationProcess

...

Trace

cmp RetVal, 0

jne DebuggerDetected

Forward Taint

16 / 29

Detection: Anti-VM - VMware

...

mov eax, `VMXh`

mov ecx, 0ah

mov dx, `VX`

in eax, dx

...

Trace

cmp ebx, `VMXh`

je detected

Forward Taint

17 / 29

Evaluation
Setup - Samples

50-guards: 50 different interleaving self-checksumming guards

decrypt-key: a checksum as a code decryption key

chksum-md5: a checksum to generate an MD5 initialization constant

time-md5: time-based defense

timing-themida & timing-obsidium packed with Themida and
Obsidium

18 / 29

Result

Table 1: Evaluation Result

Program No. of Guards Analysis Time Instructions
Found Ground Truth (sec) in Trace

50-guards 50 50 95 2,702,679
decrypt-key 1 1 8 124,472
chksum-md5 1 1 4 296,138
time-md5 4 4 5 226,855

timing-obsidium 0 Unknown 347 27,461,928
timing-themida 2 Unknown 223 9,304,222

19 / 29

Limitation

Low code coverage

The code coverage could be improved by multiple path exploration
or generating inputs by symbolic execution

Large scale trace files

Recording relevant instructions
or parallel processing

20 / 29

Challenges - Implicit Flow

Example

x =0; z =0;
i f (y=0) then x =1; e l s e z =1; e n d i f
i f (x=0) then w=0; e n d i f
i f (z=0) then w=1; e n d i f

21 / 29

Challenges - False Positives

Self-Checksumming: Data compression

Code Code Data Data

Copy Copy Copy Copy

Memory

22 / 29

Challenges - False Positives

Timing-based anti-emulation: Benchmark programs

Example

t = c l o c k ()
. . .
t = c l o c k () − t
i f (t < 10) s c o r e = 1 0 0 ;
e l s e i f (t < 20) s c o r e = 9 0 ;
. . .

23 / 29

Conclusion

We describe an information-flow-based framework for understanding a
wide variety of anti-analysis defenses

Self-checksumming, timing-based anti-emulation, anti-debugging and
anti-VM defenses are instances of this framework.

Experimental results shows that this framework is effective.

24 / 29

Related Work

In 2005, Wurster et al. employs hardware assisted techniques to
bypass the self-checksumming defense.

In 2005, Giffin et al. show that self-modifying code can be used to
detect the attack Wurster et al. proposed.

In 2008, Brumley et al. use a combination of dynamic binary
instrumentation and mixed symbolic and concrete execution, to
identify behavior that is dependent on environmental triggers.

In 2006, Crandall et al. use a combination of VM-based timer
perturbation and symbolic execution to discover time bombs in
malware.

In 2010, Lindorfer et al. and Balzarotti et al. discuss detecting
environment-dependent behavior in native malware by comparing
multiple executions in different environments.

25 / 29

End

Questions?

26 / 29

Code: decrypt-key

checksum = compute checksum (CODE) ;
f o r (i = 0 ; i < s i z e ; i ++)

CODE[i] −= checksum ;

27 / 29

Code: chksum-md5

i n t cksum = compute checksum (CODE) ;
. . .
// This v a l u e shou ld be 0 x67452301 ;
mdContext−>buf [0] = chksum + 0x6740E9CB ;
. . .
p r i n t f (”%s ” , md5 st r) ;
. . .

28 / 29

Code: timing-md5

DWORD t1 = GetTickCount () ;
MD5() ;

i f (GetTickCount () − t1 > 50)
{

p r i n t f (” I am t r a c e d .\ n”) ;
}

29 / 29

	Introduction
	Our Work
	Framework

	Evaluation
	Setup
	Result
	Discussion

	Conclusion

